Mixing, Transport and Combustion in Sprays
نویسنده
چکیده
Al~traet--Recent advances concerning analysis of sprays and drop/turbulence interactions are reviewed. Consideration is given to dilute sprays and related dilute dispersed flows, which contain well-defined dispersed-phase elements (e.g. spherical drops) and have dispersed-phase volume fractions less than 1%; and to the near-injector, dense spray region, having irregularly-shaped liquid elements and relatively-high liquid fractions. Early analysis of dilute sprays and other dispersed flows assumed either locally-homogeneous flow (LHF), implying infinitely-fast interphase transport rates, or deterministic separated flow (DSF) where finite interphase transport rates are considered, but interactions between dispersed-phase elements and turbulence are ignored. These limits are useful in some instances; however, recent evidence shows that both methods are deficient for quantitative estimates of the structure of most practical dispersed flows, including sprays. As a result, stochastic separated flow (SSF) methods have been developed, which treat both finite interphase transport rates and dispersed phase (drop)/turbulence interactions using random-walk computations for the dispersed phase. Evaluation of SSF methods for particle-laden jets; nonevaporating, evaporating and combusting sprays; and noncondensing and condensing bubbly jets has been encouraging, suggesting capabilities of current SSF methods to treat a variety of interphase processes. However, current methods are relatively ad hoc and many fundamental problems must still be resolved for dilute flows, e.g. effects of anisotropic turbulence, modification of continuous-phase turbulence properties by the dispersed phase (turbulence modulation), effects of turbulence on interphase transport rates, and drop shattering, among others. Dense sprays have received less attention and are poorly understood due to substantial theoretical and experimental difficulties, e.g. the idealization of spherical drops is not realistic, effects of liquid breakup and collisions are difficult to describe, spatial resolution is limited and the flow is opaque to optical diagnostics which have been helpful for studies of dilute sprays. Limited progress thus far, however, suggests that LHF analysis may provide a useful first-approximation of the structure and mixing properties of dense sprays near pressure-atomizing injectors. Since dense-spray processes fix initial conditions needed to rationally analyze dilute sprays, more research is this area is clearly warranted.
منابع مشابه
Experimental Investigation of Impinging Diesel Sprays for HCCI Combustion
............................................................................................................. I ACKNOWLEDGEMENTS .................................................................................... II LIST OF PAPERS................................................................................................. III BACKGROUND.........................................................
متن کاملPDF-based simulations of turbulent spray combustion in a constant-volume chamber under diesel-engine-like conditions
Transported probability density function (PDF) methods are used to account for turbulent fluctuations in composition and temperature in simulations of liquid fuel injection (n-heptane), vaporization, mixing, autoignition, combustion and soot formation for a constant-volume combustion chamber. Both stochastic Lagrangian particle and stochastic Eulerian field methods are used to solve the modeled...
متن کاملAccurate Simulation of Low-Pressure Port Fuel and Water Spray in Internal Combustion Engines; Numerical and Experimental Study
One of the solutions to reduce pollutants and increase engine power is to use water spray in internal combustion engines. In this type of engine, fuel and water sprays play an important role in engine performance. In this regard, the purpose of this study is to accurately simulate fuel and water sprays and provide optimal coefficients to achieve the best simulation results. For this purpose, th...
متن کاملCombustion kinetics
Combustion kinetics ...................................................................................................................................... 1 Physical mixing and its effects on ignition, propagation and extinction ...................................................... 2 Mixing ...........................................................................................................
متن کاملInvestigation of the Ignition and Combustion Processes of a Dual Fuel Spray under Diesel-like Conditions using CFD Modeling
Recent research activities in the field of Diesel engines have shown the potential to reduce pollutant emissions and improve thermal efficiency by controlling fuel reactivity. However, understanding the impact of blending fuels with different physical and especially chemical properties on diesel-like spray mixing and combustion processes is still a challenge. Since the experimental techniques a...
متن کامل